Worksheet for 2020-03-20

Conceptual questions

Question 1. For each of the following integrals, would you rather use $\mathrm{d} A=\mathrm{d} x \mathrm{~d} y, \mathrm{~d} y \mathrm{~d} x$, or $r \mathrm{~d} r \mathrm{~d} \theta$?
(a) $\iint_{D} e^{y^{3}} \mathrm{~d} A$ where D is some region in the $x y$-plane.
(b) $\iint_{D} \mathrm{~d} A$ where D is the region bounded by $y=x$ and $y^{2}=2 x+2$
(c) $\iint_{x^{2}+y^{2} \leq 1} e^{-x^{2}-y^{2}}$.

Computations

Problem 1 (Polar integration). Consider the region between the paraboloid $z=x^{2}+y^{2}$ and the plane $z=x+y$.
(a) By setting the two expressions of z equal, you obtain an equation in x and y that describes a curve in the $x y$-plane; the region in question resides over the area enclosed by this curve. It should be a familiar shape-draw it.
(b) Of the two surfaces, which one is the top of the 3 D region in question and which one is the bottom?
(c) What polar curve encloses your region of integration? What are the θ bounds?
(d) Set up an integral for the region in question.

Problem 2 (Gaussian integral). One of the most spectacular and unexpected applications of polar integration is to compute the following integral (of paramount importance in probability and statistics):

$$
A=\int_{-\infty}^{\infty} e^{-x^{2} / 2} \mathrm{~d} x
$$

If we square this expression, we get

$$
A^{2}=\int_{-\infty}^{\infty} e^{-x^{2} / 2} \mathrm{~d} x \int_{-\infty}^{\infty} e^{-y^{2} / 2} \mathrm{~d} y
$$

where I can use a different letter for the second integral because it's just a dummy variable anyway. But then I can combine these:

$$
A^{2}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2} / 2} e^{-y^{2} / 2} \mathrm{~d} y \mathrm{~d} x
$$

and here the integrand can be rewritten as a single exponential. Use this to compute A. (Switch to polar, and think about what your r and θ bounds ought to be.)

